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1 | INTRODUCTION
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Abstract

Desertification is the impoverishment of arid, semiarid, and some subhumid ecosys-
tems. The assessment of global scale desertification vulnerability to climate change
and human activity is important to help decision makers formulate the best strategies
for land rehabilitation and combat global desertification in sensitive areas. There is no
global desertification vulnerability map that considers both climate change and
human activities. The main aim of this study was to construct a new index, the global
desertification vulnerability index (GDVI), by combining climate change and human
activity, provide another perspective on desertification vulnerability on a global scale,
and project its future evolution. Using the probability density function of the GDVI,
we classified desertification vulnerability into four classes: very high, high, medium,
and low. The results of the analysis indicated that areas around deserts and barren
land have a higher risk of desertification. Areas with a moderate, high, and very high
desertification risk accounted for 13%, 7%, and 9% of the global area, respectively.
Among the representative concentration pathways (RCPs), RCP8.5 projected that the
area of moderate to very high desertification risk will increase by 23% by the end of
this century. The areas where desertification risks are predicted to increase over time

are mainly in Africa, North America, and the northern areas of China and India.
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serious threat to arid and semiarid environments, which cover about
41% of the global land area and are home to more than 38% of the

The United Nations Convention to Combat Desertification (UNCCD)
defines desertification (UNCCD, 1994) as “land degradation in arid,
semiarid, and dry sub-humid areas resulting from various factors,
including climatic variation and human activities.” Human activities
such as pollution, the exploitation of natural land for agriculture, and
overgrazing are the main factors triggering desertification and land
degradation (Brandt & Thornes, 1996; Yassoglou & Kosmas, 2000;
Geist & Lambin, 2004; Yu et al., 2018). Climate change triggers desert-
ification (Nicholson, 2002) by altering the spatiotemporal patterns in
temperature, rainfall, and wind (Sivakumar, 2007). Desertification is a

total global population (Global Land Project, 2005; Huang et al.,
2017). It has been reported that desertification affects one quarter of
the world's land surface, and 10-20% of drylands are already
degraded (medium certainty; Millennium Ecosystem Assessment,
2005; UNCCD, 1994), which directly affects some 250 million people
in the developing world. This figure is likely to expand substantially in
the face of climate change and population growth (PG; Reynolds
et al,, 2007; Huang et al., 2016, 2017, 2019).

The identification and projection of areas that are vulnerable
to desertification would enable policymakers to develop the best
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strategies for slowing down desertification and establishing suitable
land rehabilitation projects in sensitive areas. However, desertifica-
tion is a complex phenomenon that is usually promoted by multiple
causal agents (Geist & Lambin, 2004; Qi et al,, 2013), such as bio-
physical and socioeconomic factors (Stafford Smith & Reynolds,
2002; Verstraete et al., 2009; Jafari & Bakhshandehmehr, 2016).
Many mathematical models have been developed to delineate areas
of desertification vulnerability on the basis of different indexes and
data sets. The most frequently applied is the Mediterranean
Desertification and Land Use Model, which incorporates the four
main land degradation and desertification factors—climate, soil, veg-
etation, and land management—into an environmental sensitivity
index to map the environmental sensitivity to desertification
(Kosmas et al., 1999; Lavado Contador et al, 2009). However, the
Mediterranean Desertification and Land Use model needs to be
modified when applied to other regions in order to consider special
factors (Pravalie et al., 2017). Consequently, most studies have
focused on the extent of regional desertification, and because the
factors considered were different, these assessments are not able
to be directly compared. The US Department of Agriculture
(USDA) first provided a global desertification vulnerability on the
basis of a reclassification of the Global Soil climate map and Global
Soil map (Eswaran & Reich, 2003). Spinoni et al. (2015) assessed
the global desertification risk considering only climate change. With
the increasing use of satellites to monitor the Earth, abundant bio-
physical data are available on a global scale, such as the Leaf Area
Index (LAI), which is an important factor of net primary production
(NPP), water and nutrient use, and carbon balance. The number of
data sets that describe social variables at global scales has also
increased, such as population density (PD) data, carbon dioxide
(CO,) emissions, and gross domestic product (GDP) data. PD indi-
cates the demand intensity of human activities for natural
resources, which imposes a direct pressure on the environment.
Both CO, emissions and GDP represent the economic and devel-
opment status. With increasingly global data sets available, the
World Atlas of Desertification, third edition (Cherlet et al., 2018),
suggested exploring and combining a variety of different global
data sets. However, no uniform index that considers both human
activities and climate change is suitable for assessing global deserti-
fication vulnerability. Although some studies have explored future
desertification wvulnerability using different methods (Henderson-
Sellers et al., 2008; Miao et al, 2015; Rampone & Valente, 2019),
the global desertification vulnerability to climate change and human
activities has been largely ignored. The Fifth Coupled Model
Intercomparison Project (CMIP5) has generated projections under
different emission scenarios and could provide the data necessary
for projecting desertification vulnerability. Therefore, the main aims
of this study are to (a) construct a new index, the Global Desertifi-
cation Vulnerability Index (GDVI), by combining climate change and
human activity on a global scale, and to (b) assess the spatiotem-
poral evolution of global desertification from 2000 to 2014 and
(c) project future global desertification vulnerability by the end of
this century under different scenarios.

2 | MATERIALS AND METHODS

21 | Data

PD, CO, emissions, GDP, surface air temperature anomaly, aridity
index (Al), and LAl data were used to construct GDVI, as shown in
Figure 1. The PD, CO; emissions, and GDP were used to build the
human activity index (HAI). NPP and soil moisture were used to vali-
date the GDVI. We used the Food and Agriculture Organization of
the United Nations definition of Al, in which Al is defined as the ratio
of the annual precipitation to the annual potential evapotranspiration
(Food and Agriculture Organization of the United Nations, 1977).
Anomaly means a departure from a reference value or long-term aver-
age; here, surface air temperature anomaly (AT) refers to the depar-
ture of surface air temperature from the mean temperature during the
period 1961-1990 at each pixel for the given year. All of the data sets
have different spatial resolutions. To make them compatible, we inter-
polated the data to a resolution of 1.0° x 1.0°. Because different data
sets have different temporal resolutions, all data sets were calculated
to an annual mean. Additionally, some of the data sets had a different
time length; thus, 2000-2014 was chosen to represent the observa-
tion period, and 2015-2100 was used for future projections. Given
the different magnitudes of the data sets, we used the 99.9% and
0.1% thresholds as the maximum and minimum values to rescale the
data between 0 and 1 when constructing GDVI. Thus LA, Al, AT, and
HAI have the same spatiotemporal resolution and magnitude. Twenty
CMIP5 models (Table S1) were used to analyze the future changes of
GDVI. Two future scenario predictions from 2006 to 2100 with
medium (representative concentration pathway 4.5 [RCP4.5]) and
high (RCP8.5) greenhouse gas emissions were conducted. We used
the multimodel ensemble mean to reduce the uncertainty in future
projections. More detailed information about data sets source and
description are found in the Supporting Information.

CO, emission Population Growth
(PG)

Gross Domestic Population Density
Product (GDP) (PD)

[ Human Activity Index (HAI) |

Global Desertification Vulnerability Index (GDVI)

ICIimate Environment Index (CEI)|
y

Aridity Inde: Leaf Area
(A1) Index (LAI)

FIGURE 1 Diagram of the global desertification vulnerability
index (GDVI) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Global Distribution of the Mean (a) Surface Air Temperature Anomaly (AT), (b) Aridity Index, (c) Leaf Area Index, and (d) Human
Activity Index for 2000-2014 [Colour figure can be viewed at wileyonlinelibrary.com]

2.2 | Methods All four human activity indicators were nondimensionalized prior
to constructing the HAI.

221 | Estimation of the HAI We normalized the HAI in the study using the following method:

To estimate the influence of human activity, we constructed an HAI 0 (x<a)

on the basis of four human indicators: PD, PG, CO, emissions, and X' = H (asxsb), (3)

GDP (Zhang et al., 2017). The larger PD indicates that more natural 1 (x>b)

resources are required and more pressure is imposed on the envi-
ronment. PG is the result of the impact of social policy on popula-
tion, with an increase in population implying more pressure on the
environment over time. CO, emissions and GDP are indicators of
the current economic and development status. The HAI was defined
as follows:

HAI =w3PD(t) +W,PG(t) + w3CO,(t) +w4GDP(t), (1)

where wy, w,, wa, and wy are the weighting coefficients of PD, PG,
CO, emissions, and GDP, respectively, as determined by the criteria
importance obtained through the intercriteria correlation (CRITIC)
method (Diakoulaki et al., 1995). PG in year i was defined as the dif-
ference in PD between yeariand yeari - 1.

PG =PD; PD;.;. (2)

where x represents HAl, a=x-2 x o, b=Xx+2 X o, X is the mean of HAI,
and ¢ is the standard deviation of HAI. The HAI ranges from O to 1 fol-
lowing normalization. A higher HAI implies greater human activity,
suggesting a larger demand for natural resources and a greater possi-
bility of land and water resource abuse (e.g., land overdevelopment,
water shortages, and grassland overgrazing). Therefore, a higher HAI
suggests a larger contribution of human activity to the

desertification risk.

2.2.2 | Estimation of the GDVI

The GDVI was based on the assumption that the desertification risk is
higher in areas with a high warming rate, high aridity, low vegetation
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FIGURE 3 (a) Global distribution of the mean global

desertification vulnerability index (GDVI1) for 2000-2014. Areas
dominated by barren land are shown in grey. (b) The probability
density function for the logarithm of the GDVI. The blue dotted line
represents the threshold value used to classify the GDVI [Colour
figure can be viewed at wileyonlinelibrary.com]

cover, and intense human activity. We combined LA, AT, Al, and HAI
to construct GDVI. The GDVI values for each grid over the globe were
obtained using the following formula:

GDVI=CEIxHAl, (4)

where CEl = 1/LAl x AT/Al, and CEl is the climate environment index.
Because the HAI was nondimensional and ranges from O to 1, AT,
LA, and Al were rescaled using Equation (5).

a — (5)
Xmax  Xmin'

where x represents AT, LA, and Al. Xyax and Xy, are their maximum
and minimum values, respectively, which were defined by the 99.9%
and 0.1% thresholds. The type of indicator used to assess desertifica-
tion vulnerability provided an overview of the evolution of ecosys-
tems and environments.

223 | Statistical analysis

To give an intuitive view of global desertification vulnerability to cli-
mate change and human activities, we used a probability density

distribution function to grade desertification vulnerability, estimated
with our GDVI, into four classes: low, moderate, high, and very high.
To verify the grading results, we compared our results with the
desertification vulnerability map of USDA (Eswaran & Reich, 2003).
First, because the USDA desertification vulnerability map data are
rasterized on a 2-min grid cell, these data were aggregated into 1°
spatial resolution data to match the GDVI data using the majority
algorithm, which calculates the most prevalent desertification risk
class for a 1° grid cell. Then we compared the spatial distribution of
global vulnerability of our results and those of the USDA. We also cal-
culated the area fraction of different subtypes estimated by the USDA
and GDVI. Moreover, we calculated the Pearson correlation coeffi-
cients between GDVI, NPP, and soil moisture to test the reliability of
the GDVI data at each pixel. The significance of the correlation was
tested using Student's t test at the p < .05 level. To ensure the reliabil-
ity of the future projection, we compared the results of a CMIP5-EM
simulation with observations taken over the same period. To do this,
bilinear interpolation was used to interpolate the spatial resolution
results of the CMIP5 models into a 1° x 1° spatial resolution. In calcu-
lating the global-averaged HAI and LAl in Figure 9, each pixel was
weighted using W; [W; = cos(g; x #/180.0), where 6, is the latitude of
grid i]. All of the maps and plots in Figures 2-11 were produced using
National Center for Atmospheric Research Command Language Ver-
sion 6.5.0. The function, “gsn csm contour map,” provided by the
National Center for Atmospheric Research Command Language was
used to produce the maps in Figures 2-11. That function could create
and draw a contour plot over a map on the given workstation
(https://www.ncl.ucar.edu/Document/Graphics/Interfaces/gsn csm
contour map.shtml). The attribute of map was added and modified by
using MapPlot and MapTransformation (https://www.ncl.ucar.edu/
Document/Graphics/Resources/mp.shtml#mpProjection). The coast-
lines of the map are the simplified version of those in the Regionally
Accessible Nested Global Shorelines database, which was developed
by Rainer Feistel from Wessel and Smith's Global Self-consistent Hier-
archical High-resolution Shoreline database.

3 | RESULTS
3.1 | Global distribution of desertification
vulnerability

The distribution of the mean AT, Al, LAI, and HAI from 2000 to 2014
were shown in Figure 2. It shows an increase in surface air tempera-
ture over the global continent, but with a nonuniform warming distri-
bution (Figure 2a). The temperature warming in the Northem
Hemisphere is significantly greater than that in the Southern Hemi-
sphere, especially in some regions in the high latitudes, with the
warming anomaly being greater than 2.0°C. Drylands occupy a large
proportion of the global land area (Figure 2b), and therefore, desertifi-
cation occurring in drylands may have a serious impact on human
society and survival. The LAl is inversely cormrelated with the Al
(Figure 2c). Vegetation in arid regions (e.g., northwestern China,
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southern Africa, and Australia) is barren and sparse and must survive
in a harsh living environment, with limited soil and water availability.
In contrast, the vegetation cover is dense in humid regions, where the
water supplied by precipitation is adequate and exceeds the losses
due to evaporation. Figure 2d shows the distribution of the HAI. It
shows that human activity is greatest in India, followed by the east of
Asia, America, and central Africa, where the PD and CO, emissions
are high.

On the basis of the CEl and HAI, the GDVI was estimated, and
values were shown in Figure 3. We classified desertification vulnera-
bility into four very high (GDWVI > 81.5), high
(31.5< GDVI £815), medium (10.0<GDVI = 31.5), and low
(GDVI = 10.0) according to the probability density function. There are
two distinct peaks in the probability density function for the logarithm
of GDVI, as shown in Figure 3b, where the logarithm of GDVI is 1.70
(GDVI = 5.5) and 2.50 (GDVI = 12.2), respectively. The local minimum,
where the logarithm of GDVI is 2.3 (GDVI = 10.0), between two peaks
is the point that determined the boundary between the low and
medium classes. After the probability density reaches the second
peak, it decreases rapidly to the point where the logarithm of GDVI is
3.45 (GDVI = 31.5) and then decreases slowly until the point where
the logarithm of GDVI is 4.40 (GDVI = 81.5). The region where the

classes:

GDVI is greater than 31.5 and less than 81.5 is a transition region, in
which desertification vulnerability was determined to be high,
whereas to the right it is very high and to the left it is medium.

Figure 4a shows the mean GDVI distribution for 2000 to 2014.
The high level of desertification risk is mainly in the westemn part of
the United States, the Sahel, central Asia, and northern China, where
vegetation is sparse (Figure 2c) and the climate is dry (Figure 2b). The
desertification risk is moderate to severe in the Indian subcontinent
and North China Plain due to intense human activity (Figure 2d). In
southwestern Europe, the desertification risk is also moderate, which
is consistent with previous studies (Martinez-Valderrama et al., 2016;
Symeonakis et al., 2016).

We compared our results with the desertification vulnerability
map made by the USDA (Eswaran & Reich, 2003). Regions with a
humid, hyperarid, or cold climate are excluded, following the UNCCD
definition of desertification. The spatial distribution of USDA data is
similar to that of the GDVI data (Figure 4a,b). The area where two
data are coincident dominates the distribution pattern (Figure 4c),
mainly in Africa and South America. The most inconsistent region is in
India and Indo-China Peninsula. In India, the risk is overestimated
because of the intensive human activity. After considering the PD, it
is determined that the Indian subcontinent had a high risk of
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FIGURE 5 Global distribution of mean (a) net primary
productivity and (b) soil moisture content for 2000-2014 [Colour
figure can be viewed at wileyonlinelibrary.com]

desertification on the basis of USDA data (Eswaran et al., 2009). How-
ever, because of the high LAl the desertification vulnerability is
underestimated in the Indo-China Peninsula, where the GDVI is low.
Because the USDA map was based on a reclassification of the global
soil climate map and the global soil map, which are different compo-
nents with those used in the GDVI, the two maps could not be coin-
cided by point to point. Generally speaking, GDVI is reasonable and
reliable.

To test how effective the GDVI is in assessing the desertification
vulnerability, we compared the GDVI with NPP and soil moisture
because NPP and soil moisture can be used to estimate the productiv-
ity of land and ecosystems over a region (Higginbottom & Sym-
eonakis, 2014; Shinoda & Nandintsetseg, 2011). Desertification
results in a reduction or loss of productivity in drylands. Therefore,
NPP and soil moisture have a close relationship with desertification,
with a higher desertification risk implying a smaller NPP. Figure 5
shows the global distribution of mean NPP and soil moisture for the
period of 2000-2014. They show a similar distribution pattern, with a
higher soil moisture content corresponding to a higher NPP. In barren
regions, the soil moisture content is less than 15 kg m~2, whereas in
some extremely dry regions, it is less than 5 kg m™2 and the NPP is
0. Both NPP and soil moisture show the opposite distribution to that
of the GDVI. Regions with a higher GDVI have a smaller NPP and soil
moisture content (Figure 5a).

-180° -120° -60° 0 60° 120° 180°

-10 -08 06 04 -02 00 02 04 06 08 10

FIGURE 6 (a) Frequency of certain net primary productivity (NPP)
values for regions with different global desertification vulnerability
index (GDVI) values for 2000-2014. (b) Distribution of the correlation
coefficients for the relationship between NPP and GDVI. The
stippling pattemn indicates the 95% confidence level according to a
two-tailed Student's t test [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 6a shows the frequency of certain NPP values for regions
with different GDVI values. It shows that the regions with a high NPP
are mainly located in regions with a lower GDVI, and the frequency of
high NPP values decreases as the GDVI values increase. Regions
where the high frequency of NPP values is 0-0.2 are mainly located
in regions with a GDVI greater than 80. This confirmed that the GDVI
has a close relationship with biological productivity. Regions with a
lower level of vegetation productivity are more sensitive to climate
change and human activity and thus more vulnerable to desertifica-
tion (Le Houérou 1996; Reynolds et al., 2007; Lavado Contador et al.,
2009). NPP and GDVI have a negative correlation in most regions,
except the very cold high latitudes where there is extensive snow and
ice cover (Figure éb). The negative correlation coefficient indicated
that regions with a high desertification risk has a low NPP. Over the
high latitudes, there is a positive relationship between NPP and GDVI.
This may be because there are large areas of ice and snow over these
regions, with little vegetation cover. When temperature increases
over these regions, the ice and snow may melt, and the environment
will become more suitable for the growth of vegetation.
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This contradicts our previous assumption that the desertification risk
is higher in areas with high temperatures.
The relationship between soil moisture and GDVI is shown in

Figure 7. Soil moisture content larger than 30 kg m2

is mainly in
regions with GDVI less than 20. Soil moisture content less than
15 kg m~2 is mostly distributed in regions with GDVI greater than 80.
This indicates that regions with a lower level of soil moisture have a
higher risk of desertification, which corresponds to our existing
knowledge of desertification. Soil moisture has a stronger relationship
with GDVI than NPP, with most regions having a negative correlation

coefficient and being within the 95% confidence level.

3.2 | Risk expansion of global desertification

In order to ensure the future projection, we evaluated CMIP5 simula-
tions of the GDVI compared with observations over the same time
period (2000-2014). The results show that the spatial distribution and
areal coverage of different risk classes determined by simulation are
consistent with observations (Figure 8a,b). Generally, there is a very

Low Moderate High Very High
80 1 1 1 1
J Observation |
co. [ ] CMIP5_EM

20 -
i ERN=""1" N
Low Medium High Very High
FIGURE 8 (a) The global distribution of desertification risk level

during 2000-2014 estimated by the global desertification
vulnerability index in the ensemble mean of Fifth Coupled Model
Intercomparison Project (CMIP5); (b) The area coverage (percentage
of global land area [60°S-65°N]) of different level risk (bar charts
filled with an asterisk represent the observed value, and the solid
color represents the projected value) [Colour figure can be viewed at
wileyonlinelibrary.com]

high risk of desertification in arid and hyperarid areas. Areas with
good vegetation cover suffer from lower risk of desertification. There
is an area with a difference between the observations and projected
values located in northern Canada and eastern Russia. Areas with an
observed lower risk of desertification, that is, areas with an over-
estimation in the ensemble mean of CMIP5 results, are mainly located
in western Canada and northern China. However, the observed area
coverage of low risk types is greater than the projected area.

Figure 9 shows the evolution of the HAI and LAl from 1981 to
2100. The global mean HAI increases monotonously under the
RCP8.5, indicating that human activity would increase in the future.
However, under the RCP4.5, the HAI will reach a maximum around
2040 and then decline. The global mean LAl will increase slowly under
both the RCP4.5 and RCP8.5, but the rate of increase under RCP4.5
will be lower than that under RCP8.5. The global mean Al values will
decrease in the future projection (Huang et al., 2016), and the temper-
ature will increase under both the RCP4.5 and RCP8.5 (Rogelj
etal, 2012).

The spatial and temporal distributions of the future desertification
risk according to GDVI were presented in Figures 10 and 11. By the
end of this century, the coverage of low risk areas will rapidly decline
from 47% to 24% under the RCP8.5 and decline to 35% under the
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RCP4.5 (Figure 11a). The area of moderate, high, and very high risk
areas will increase by 10%, 5%, and 8% (Figure 11b-d)), respectively,
indicating that the risk of desertification will increase at the global
scale under the RCP8.5. Under the RCP4.5, the area of all risk catego-
ries, except the low-level risk, will increase slightly by 2100. For the
RCP4.5, comparing the means of 2001-2014 and 2086-2100, the
risk of desertification according to the GDVI will increase over
Europe, western Asia, northermn China, the edge of the Sahel, and
Mexico (Figure 10a). However, the risk of desertification decreases in
the Qinghai-Tibet Plateau and India. The Al decreases and surface air
temperature and HAI both increase, which indicate that climate
change and human activity both contribute to the increased desertifi-
cation risk in Europe and western Asia. The HAI decreases over India,
resulting in a reduction in desertification risk. HAl also decreases in
northern China and at the edge of the Sahel, however, the Al
decreases and surface air temperature increases, indicating that cli-
mate change dominates the desertification risk increase there. The
desertification risk decreases in the Qinghai-Tibet Plateau due to
both weakening in human activity and an increase in Al. Under the
RCP8.5, HAI increases significantly, the climate becomes drier, and
the surface air temperature increases, resulting in a dramatic increase
in desertification risk over northern China, India, Mexico, and Europe

(Figure 10b). However, in Australia, climate change is the main con-
tributor to the increased risk of desertification. Although the vegeta-
tion coverage increases with the temperature at high latitudes, a drier
climate and stronger human activity aggravate the desertification risk.

4 | DISCUSSION

4.1 | Thereliability of GDVI

GDVI was constructed by combining the effects of climate change,
human activities, and vegetation conditions (Figure 1). Vegetation
cover and the Al are important factors in desertification risk estima-
tion (Jafari & Bakhshandehmehr, 2016; Lavado Contador et al., 2009).
AT is widely used to estimate recent climate change (Dodd et al.,
2014). Increasing PD adds pressure to economic and environmental
systems. GDP and CO, emissions are closely related to economic and
social development. Therefore, to estimate the contribution of human
activity to global desertification, we combined the effects of PD,
GDP, and CO, emissions using a weighted scale. The desertification
vulnerability map (Figure 4) of USDA (Eswaran & Reich, 2003) was
used to verify the result of classified GDVI on the basis of the
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FIGURE 10 The change of desertification risk level in
2086-2100 compared with 2000-2014 under the representative
concentration pathway (RCP) 4.5 and RCP8.5. (a) 2081-2100 under
the RCP4.5 and (b) 2086-2100 under the RCP8.5. “Upgrade” means
indicated risk level transitioned from lower to higher subtypes; and
“Degrade” refers to transitioned from original subtypes to a lower risk
level [Colour figure can be viewed at wileyonlinelibrary.com]

probability density function (Figure 3). In most regions, the desertifica-
tion vulnerability maps were coincident (Figure 4). The GDV/I's ability
to assess global desertification vulnerability was also tested by com-
paring it with NPP and soil moisture (Figures 5, 6, and 7). Areas with a
high GDVI value are sparsely vegetated areas with low levels of NPP
(Figures 5 and 6) and dry areas with small amounts of soil moisture
(Figures 5 and 7). GDVI was negatively correlated with NPP and soil
moisture, both spatially and temporally (Figures 6 and 7). Generally,
GDVI produced reasonable and reliable desertification vulnerability
results.

4.2 | The distribution of GDVI

According to the GDVI distribution, areas with the highest risk of
desertification are mainly located in northem China, northern Africa,
western America, India, and Mexico during 2000-2014 (Figure 4). In
northern China, desertification was affected by climatic aridity and
land use and management, in which socioeconomic factors were pre-
dominant (Chen & Tang, 2005; Feng et al., 2015); this is consistent
with our results that show that the areas of northern China suffer
from more severe desertification risk due to high human activity
(Figure 2d) and climatic aridity (Figure 2b). We showed that India suf-
fers from high desertification. Similarly, land degradation in India was

emphasized in Arya et al. (2009) and Kundu et al. (2017). In central
Asia, Zhang et al. (2018) showed exacerbated grassland degradation
and desertification from 2000 to 2014. Our results also showed that
central Asia has a high desertification risk. The high desertification risk
and land degradation over Mexico and the Sahel in our study are also
reported in the literature (Nicholson et al., 1998; Hein & De Ridder,
2006; Becerril-Pina et al., 2015). However, there are several regions
in which our desertification assessment does not agree with previous
studies. For example, Tomasella et al. (2018) found that northeastemn
Brazil suffers from desertification, whereas our results indicated a
moderate risk of desertification over this area due to high LAl
(Figure 2a) and small AT (Figure 2c). Generally, our constructed GDVI
works well compared with previous studies in assessing
desertification risk.

4.3 | The projection of GDVI

Our results demonstrated that CMIP5 satisfactorily reproduced the
spatial distribution of GDVI compared with observations (Figure 8).
RCP4.5 assumes the imposition of emissions mitigation policies
(Thomson et al., 2011). RCP8.5 is based on a scenario that combines
assumptions about high population and relatively slow income growth
with modest rates of technological change and energy intensity
improvements, leading in the long term to high energy demand and
greenhouse gas emissions in the absence of climate change policies
(Riahi et al., 2011). Under different policies, human activities will be
more intense under the RCP8.5 than under the RCP4.5 (Figure 9), and
climate change will be more severe. Under the RCP8.5, low-risk areas
will rapidly decline (Figure 11) as high-risk areas largely expand
(Figure 10). Subtype changes will be more significant under the
RCP8.5 than under the RCP4.5 (Figures 10 and 11). Therefore, a
global action plan should be developed to prevent future desertifica-
tion. It should be noted that uncertainties related to climate change
and human activity are expected to increase over time; thus, uncer-
tainty associated with projected GDVI will also increase, despite our
use of the multimodel ensemble mean of CMIP5 to reduce the uncer-
tainty of future projections.

44 | Theweakness of GDVI

Although GDVI provides a picture of risk state combining the influ-
ence of climate change, human activities, and vegetation conditions
and could help to develop strategies for rehabilitation, it has the
weakness of an equal weighting for all indices. A detailed analysis of
the causes and main factors leading to global desertification vulnera-
bility was not conducted. With advances in technology and a better
understanding of climate change and anthropogenic contributions,
ecological protection engineering and rehabilitation technology (Ojeda
et al., 2016) are expected to play an increasingly important role in
desertification control and mitigation. However, land management
and environmental protection depend strongly on the specific region;
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FIGURE 11 The time series of area coverage (percentage of global land area [60°S-65°N]) of different desertification risk from 1981 to
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thus, it is difficult to quantify their roles in mitigating risk, especially
on the global scale. So environmental protection engineering was not
quantified in the HAI in this study. As such, our results may over-
estimate the desertification risk in areas where environmental protec-
tion engineering has been implemented. In future studies, the use of
the GDVI in a particular local region needs to be carefully verified on
the basis of comprehensive local data. Studies are also needed to clar-
ify the contributions of these factors and determine the dominant
indicators and subindicators. For the future development of the GDVI,
biophysical and socioeconomic factors, such as soil quality, environ-
mental protection engineering, and industrial structure, should be con-
sidered to obtain more details of desertification at the global scale.

5 | CONCLUSIONS

This study produced a desertification vulnerability map that considers
both climate change and human activities at a global scale and indi-
cated the global area of the risk class of desertification. According to
the GDVI distribution, our results show that areas around deserts or
barren land have the highest risk of desertification, especially in north-
ern China, northern Africa, western America, India, and Mexico during
2000-2014. We also estimated the spatial and temporal variation of
the GDVI using CMIP5 simulations under the RCP4.5 and the RCP8.5.
With the expansion of dryland area, warming, and more intensive
human activity, the risk of desertification will increase at the global
scale. By the end of this century, the coverage of low-risk

desertification areas will rapidly decline from 47% to 24% under the
RCP8.5 and decrease to 35% under the RCP4.5. There will be an
increased risk in North America, eastern Russia, Africa, and northem
China. As the area of high-risk desertification expands in the future,
poor people in dryland areas will experience more natural disasters,
and a global plan of action is therefore needed to reduce the risk of
desertification.
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